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Abstract—This 1s the second of two papers on countercurrent gas-liqud flow flooding 1n an elbow
of which the upper limb 1s vertical and the lower hmb 1s horizontal or shghtly inclined. In part I,
experiments were described in which flooding limits were measured in air-water flow mn various
pipe clbows of this type; flooding was found to be caused by the onset of siugging at a hydraulic
jump which formed in the lower Iimb of the elbow close to the bend. In the present paper a
theoretical model is developed by which the flooding limits for this elbow geometry can be predicted.
The model assumes that a smooth stratified flow exists in the lower limb of the elbow, with a free
outfall at the exit. Flooding is assumed to coincide with slug formation just downstream of the
bend where the hiquid depth is greatest. The model gives a reasonable prediction of the observed
effects on the flooding limit of the length-to-diameter ratio and angle of inclination of the lower leg
of the elbow.

1. INTRODUCTION

In a previous paper (Siddiqui er al. 1986), referred to subsequently as part I, experiments
were described in which flooding limits were measured for air —water flow in elbows formed
by vertical and horizontal or near-horizontal pipes. The main observations were that:
(i) flooding in the elbow geometry occurred at gas flow rates much smaller than those
needed to produce flooding in a vertical pipe of equal diameter;
(ii) flooding inception coincided with unstable wave formation (slugging) in the lower leg
of the elbow, close to the bend;
(i) the gas flow rate for flooding depended strongly on the length-to-diameter ratio and
inclination of the lower leg of the elbow, and on the radius of curvature of the bend.

In this paper a theoretical model is described which provides a convenient method for
predicting the flooding limit in an elbow between a vertical and a horizontal or near-
horizontal pipe. The analysis is based on the fundamental assumption that flooding is due
to the onset of slugging in the lower leg of the elbow close to the bend, where the liquid
depth is greatest. The gas and liquid flow rates at the flooding point are calculated by
solving the phasic mass and momentum conservation equations for the stratified two-phase
flow in the lower limb of the elbow.

Gardner (1983) recently developed a model for flooding in a horizontal pipe by con-
sidering the motion of lossless waves in a stratified flow. However, when applied to the
case of a 90° vertical-to-horizontal elbow, his model does not describe the observed effect
of the horizontal pipe length-to-diameter ratio on the flooding limit; nor is the effect of
pipe inclination accounted for. More importantly, Gardner’s model predicts that the flow
rate for zero liquid downflow (i.e. complete liquid carry-up) is similar for horizontal and
vertical tubes. This is inconsistent with experimental observations, which show that the gas
flow rate needed to prevent liquid penetration into a 90° elbow can be four or five times
smaller than that for the equivalent vertical tube. The model described in the present pa-
per predicts the geometrical trends, and the limit for complete carry-up, with reasonable
accuracy.
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2 DESCRIPTION OF THE PHENOMENA

The situation of interest 1s shown 1 figure 1. A long tube inchined at an angle ¢ to
the horizontal (a positive value of ¢ will be used to denote an upward inclination) is
connected at inlet to a vertical tube by an elbow. Liquid at a constant flow rate is introduced
into the vertical leg at A through a T-piece or porous sinter, etc. (not shown) and gas at
a constant flow rate is introduced at the tube exit E. The liquid flows down the vertical
tube as a wall film, and then forms a stratified flow tn the lower limb of the elbow

We assume that the velocity of the liquid stream entering the lower limb of the elbow
from the bend at B is initially supercritical (i.e. above the velocity of propagation of gravity
waves). A transition to subcritical flow is assumed to take place at a hydraulic jump at C,
which is the point of maximum liquid depth. A free out-fall is assumed at E, implying that
the liquid velocity at E is equal to the critical velocity (Chow 1959). Between C and E the
liquid depth steadily decreases while the liquid velocity increases.

In the experiments described in part I the above situation was observed experimentally.
It was observed that as the air flow was increased the hydraulic jump moved close to the
elbow B. When the air flow rate reached a critical value, unstable wave formation (slugging)
occurred at the crest of the hydraulic jump, where the air velocity was highest, leading to
expulsion of water from the tube inlet (flooding). Thus, for the flow geometry shown in
figure 1, flooding is identified with the inception of a wave instability at a hydraulic jump
located in the lower leg of the elbow close to the bend.

3. THEORY

To predict the gas and liquid flow rate at the flooding point for the geometry in figure
1 we assume, as described above, that flooding coincides with the onset of slugging at the
hydraulic jump located at point C close to the pipe bend. The gas flow rate at slugging is
related to the height of the jump by the purely empirical equation given in part I. A second
equation is provided by the condition that the liquid velocity at the exit E 1s equal to the
critical velocity. Finally the conditions at B and E are related by solving the conservation
equations for a stratified flow between B and E using a two-fluid formulation. In summary,
therefore, the flooding curve is calculated from a theoretical analysis of near-horizontal
stratified flow coupled with a purely empirical correlation for the onset of slugging at the
hydraulic jump. Details are described below.

3.1 Instability criterion
It was observed experimentally in part I that the onset of slugging at the hydraulic
Jjump near the pipe bend could be described using the equation

J& =j&a¥?, (1]
A
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Figure 1 Flow system under consideration
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where j% is the nondimensional volumetric flux of phase k defined by

QiU
(gDprs/p)i? .

Here a,, ps» and u, are, respectively, the volumetric concentration, density, and actual
velocity of phase k (k = G denotes the gas phase and k = L denotes the liquid phase).
g and D are the acceleration due to gravity and the pipe diameter, respectively, and
P = PL — Pe:

In [1], the factor j %, is a constant, which was found experimentally to be approximately
equal to 0.2; a; denotes the void fraction at the location of the hydraulic jump, where the
liquid depth is greatest.

(2]

it=

3.2 Calculation of the stratified flow

We consider the horizontal stratified countercurrent flow in the lower limb BE of the
elbow shown in figure 1. Assuming a steady incompressible flow and neglecting interphase
mass transfer and surface tension, the one-dimensional mass and momentum conservation
equations can be written, respectively, as (Hancox ef al 1980)

0
2 =0,
ax (akuk) (3]
— a;k aﬁk = | 0a; .
akpkuk67+ak67"(}’x ‘Pk)“—‘ax =~ Tw — Ty — Qprgsing, (4]

where x is the distance from C, P, is the pressure in the bulk phase k, P, is the interface
pressure, and 7,, and 7, denote the force acting on phase k per unit flow volume due to
wall shear and interfacial shear, respectively, and ¢ is the upward inclination of the pipe.
The overbars refer to phase-average quantities, defined by

- 1
ak=7 ade;

kAk

where A, is the portion of the pipe area occupied by phase k.

Equation [4] can be transformed to a more convenient form if the reasonable assumption
is made that the pressure variation over the cross section of each phase is due to hydrostatic
forces only. It then follows that

Po=P +pg(y, -y0, [5]

where y, is the elevation of the interface, and ¥: the elevation of the centroid of A, both
referred to an arbitrary datum. y, is given by

- 1
o=afyaa. 1
k
Ak
Substituting [5] into [4], and using [6], the momentum equation for phase X becomes

- P, A aa .
AP ilx a_xk ta =+ 5'(-)"Oikpkug—a;'i = - Ty - Ty —a,pegsing, [7]

where S, is the interface width (see figure 2), 4 is the duct area, and

_|-1fork =G,
+1 fork =L.

(-)*

Note the [7] is applicable to a duct of arbitrary constant cross section.
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Figure 2 Stratified flow geometry

The momentum source terms 7,, and 7, can be expressed in terms of friction factors.
By geometry we have, referring to figure 2,

S S
T = Il SE T = 7l = [8]

and

S,
Tg = —Ty= —7',"'; ) (9]

where S, denotes the tube perimeter in contact with phase k, S, 1s the interface width, and
7, and 7! are the wall and interfacial shear stresses, respectively.
The wall stresses are expressed in terms of smooth-tube friction factors f,, as

1 _
ikl = Efwk Px “i’ [10]
where

Swe = Cg Reg” f,. = C Rep™. [11]

Note that u, in [10] is the actual phase velocity rather than the superficial velocity. For
turbulent flow we use coefficients C; = C; = 0.046, n = m = 0.2; for laminar flow we

use C; = C, = 16, = m = 1. Following Agrawal et al (1973) the Reynolds numbers
are defined by
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where v, is the kinematic viscosity of phase k, and the Dy, are hydraulic diameters defined
by

D, = _iAG_
EG — (SG + S,) ’ [12]
44,
Dy = s,

As a first approximation the interface is assumed to be hydrodynamically smooth, and the
interfacial shear stress is taken as being roughly equal to the shear stress at the wall in the
part of the duct occupied by the gas phase, i.e. 7, = 7. A similar assumption was made
by Taitel & Dukler (1976) in their analysis of flow regime transitions in cocurrent stratified
flow. The effect of using other formulations for interfacial shear is discussed in section 3.5
below.

Using the fact that a; + a, = 1, the conservation equations [3) and [7] can be solved
for the derivatives aag/ax, aP,/3x, dug/ax, and au,/ax. If for the moment we restrict
our attention to the case of turbulent gas-turbulent liquid flow, so that C; = C; = 0.046,
n = m = 0.2, the void fraction gradient can be written in nondimensional form, using
[10]-[12], as

-
T o 256[(561 s) 6, + a0
+K(;’) acs L "]“a ! / ’"i;f“‘ 1'31~Z—2jjzz . 13]
where
Cs = 0.046, n = 0.2
and

Re* = 2\ IM , [14]
Ve Pc

K =264/Bs, [15]
Ve PL
I = Re*"sin¢, [16]

and ¥ = x/D, etc. Referring to figure 2, the nondimensional perimeters and the void
fraction can be expressed in terms of the angle 6 (radians) using
SG=W—6,§L=0,§,=Siﬂ0, [17]

1 1
aG=l—;(0—-2-sin20).

Using [17], S G s 1> and §, can be expressed as functions of a; only.
Critical velocity. Tt is seen from [13] that daz/dx — o« when a; satisfies the equation

m_l;a.‘i aljn _ _‘le =0. [18)

45, ag
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For j§ = 0, this reduces to

4 [T
7t as, '
which for p; << p, is the same as
A4
uL = gS_ . [19]

!

Equation [19] is the classical equation for the critical velocity in a channel of arbitrary
cross section (Chow 1959). Since the condition (das/dx)— « can be applied at the pipe
exit in a free out-fall, the two-fluid formulation thus correctly describes the exit conditions
in this case. Inclusion of the term in ;¥ in [18) shows how the exit (critical) depth is modified
by a countercurrent gas flow; this correction is not normally accounted for in open channel
flow analysis.

In the following we will assume that the critical flow condition [18] 1s satisfied in the
pipe exit plane at E. It should be noted that this assumption introduces some error. In
actual fact, because of two-dimensional effects, the critical velocity 1n a round pipe does
not occur exactly at the end of the pipe, but rather one or two diameters upstream (see
Smith (1962). For present purposes, since we are considering pipes with a large length-to-
diameter ratio, that correction to the one-dimensional theory will be ignored.

3.3 Calculation of flooding curve
Equation {13] can be written as

1 daG
(Re*™") dx

= flag, jt.j& K, I). [20]

Referning to figure 1, [20] can be integrated between the hydraulic jump C and the exit E
to give

_LRe*™)  (w dag

x - . , ’
D G f(aG’.]Z’Jg!KrI)

(21}

where L 1s the distance CD (identified with the length of the lower limb of the elbow) and
the subscripts o0 and / refer to conditions at the pipe exit (critical plane) and at the crest
of the hydraulic jump, respectively.
Now [1] provides a relationship between a s and j¥ just before flooding inception and
[18] relates ag, to ;g and j 7. Thus [1], [18], and [21] give a relationship between j % and
Jj 1 at flooding, in terms of the nondimensional parameters A, I, and K, where A is a modified
length-to-diameter ratio for the lower limb of the elbow defined by [21], 7 is an inclination
parameter defined by [16], and K is a nondimensional group depending only on fluid
properties defined by [15]. Values of X for some common two-phase mixtures are listed in
table 1.
The solution of these equations was calculated numerically for different combinations
of A, K, and I. The steps in the solution were as follows:
(i) calculate particular values for A, K, and I appropriate to system of interest;
(ii) postulate j};
(iii) guess the value of j§ that would give flooding at the chosen value of j};
(v) calculate a using [1] (with j§ = 0.2);
(v) calculate ag, by iterative solution of the critical depth equation [18];
(vi) calculate the integral in [21] numerically using Simpson’s Rule (a twenty step inte-
gration was used). This gives the value of A compatible with the selected values of
jg and j7;
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Table 1. Values of K for vanous two-phase mixtures

Two-phase mixture K
Air-water (T'=25C P = 100 kPa) 0.61
Steam-Water (F'=Tqur P = 100KkPa) 173
Steam-—-Water (T'=T4ur P= 50MPa) 047
Freon 113 (T = 25°C P = saturation pressure) 0.33
Freon 12 (T = 25C P = saturation pressure) 0.41

(vii) repeat steps (ii)—(vi) until the calculated A from step (vi) agrees with the actual value
imposed in step (i) to within 0.1%.

3.4 Numerical results

(a) Horizontal lower limb. We first consider the case where the lower limb of the elbow
is perfectly horizontal (/ = 0). Numerical results are displayed in figure 3. These calculations
are for a turbulent gas-turbulent liquid conditions (n = 0.2, C; = C, = 0.046). The
range of K values covered embraces many two-phase flows of common interest (see table
1). The effect of the K parameters is seen to be only weak.

Over the parameter range shown in figure 3,

1<AL 16,
05< K18,

022 < 06
the flooding curves can be represented with reasonable accuracy by the convenient equation
J&2 = 1.444 - 0.004 A — cosh (A? K9 (j#12)), [22]
where
p = 0.057, ¢ = -0.020, r = 0.70.
The RMS error in j;/2obtained by using [22] instead of the numerical results is under 2%.

This equation can therefore be regarded as a physically based flooding correlation for
countercurrent gas—liquid flow in a horizontal-to-vertical pipe elbow.
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Figure 3 Calculated flooding curves for turbulent gas-turbulent liquid flow Vertical-to-horizontal
elbow.

An interesting hmiting case is that of an ideal frictionless in the vertical-to-horizontal
elbow. For this case a; = ag, and the flooding curve is obtained simply by eliminating
ag between [1] and [18]. For 0 < j] < 0.9, the flooding curve thus obtained is described
accurately by the quadratic fit:

8 = 0.447 - 0.176 j* - 0.263 j# , (23]

which 1s, of course, independent of A and K. Equation [23] is plotted in figure 4 as the
line marked “frictionless flow”. It is seen that friction has a significant effect on the flooding
limit for the cases shown.

(b) Upwardly inclined lower limb. The effect of a small upward inclination of the lower
limb of the elbow is to increase the upward slope of the liquid interface in the direction of
the hydraulic jump. Since for given values of j} and ;¥ the liquid depth at E is fixed at the
critical depth (obtained by solving [18]) the steepening of the interface slope causes an
increase in the height of the hydraulic jump; the consequence is a reduction in the gas flow
rate needed to cause flooding.
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Figure 4. Effect of upward inclinations on flooding curve for different length-to-diameter ratios.
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Results of numerical calculations for different values of the inchination parameter /
(> 0), are given in figure 4. Again the calculations assume turbulent gas-turbulent hquid
flow. The results are all for K = 1.0, but the curves are reasonably accurate for the range
of K values in table 1. It should be noted that all the calculations assume that the condition
for slugging at the hydraulic jump is given by [1], i.e. that the instability condition 1s the
same in an inclined pipe as in a horizontal pipe.

It can be seen that small upward inclinations have a marked effect on the predicted
flooding curve, particularly for large values of the length parameter A (note that for 25°C
air-water flow in a 50 mm diameter pipe a value of I of 0.5 corresponds to an upward
inclination on only 3.4°). As the inclination is increased the maximum iiquid downflow that
can be achieved for a given gas upflow decreases further and further. Eventually a threshold
inchination 1s predicted where complete liquid carry-up (j7 = 0) occurs even 1n the limit
where gas flow rate approaches zero, j§ — 0, implying that countercurrent flow 1s now
impossible. Physically, this threshold upward inclination corresponds to the point at which
the slope of the interface is such that the liquid bridges the pipe at C, even 1n the absence
of gas flow. By making the substitutions j§ = ;7 = 0, ag = 1, ag = 01n [21] and [13]
this critical inclination is calculated as

1 orsmn ¢ =

A

=3 : [24]

which is the result that one also obtains from simple geometrical arguments.

(c) Downwardly inclined lower limb. The effect of a downward inclination of BE
(I < 0) is to reduce the height of the hydraulic jump. Beyond a threshold value of the
downward inclination (typically less than 0.5°) [13] predicts that da,/dX becomes negative
in subcritical flow, implying that the approach to critical flow at E cannot occur. The only
physically meaningful solution now is one where the liquid velocity 1s supercritical every-
where in the lower limb of the elbow, implying that a hydraulic jump cannot exist.

Since flooding in an elbow with a downwardly inclined lower limb in which there is
supercritical flow has not been studied experimentally in any detail, no theoretical analysis
of this interesting case is attempted herein. It should be noted however that the present
model, which assumes a subcritical flow in the lower limb of the elbow, is not applicable
for this case.

T T T T T T T
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--------- Laminar flow assumed tor Re <1500
osl —T Turbulent-turbulent flow. Govier §
- Aziz (1972) interface friction
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Alr - water flow at room temp.
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i
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Figure 5. Sensiivity of flooding curve to vanations 1n interfacial friction modehng.
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3.5 Effect of different assumptions about interfacial shear

The above calculations are all for a turbulent gas-turbulent liquid flow where the
interface shear stress is equal to the wall shear stress in the gas phase. In practice laminar
flow would be expected in the limits j7 — 0 and j% — 0, and it is interesting to examine
the effect this will have on the predicted flooding curves. Figure 5 shows a particular
example of atmospheric pressure air-water flow in a 50 mm diameter vertical-to-horizontal
elbow with D = 50 mm, L/D = 50 (corresponding to K = 0.61, A = 5.45, I = 0). The
flooding curve predicted using the turbulent-turbulent assumption is shown as the solid
line. The dotted line is the curve obtained by allowing the friction factors to transition to
laminar flow values for Re, < 1500. It is seen that ignoring the transition to laminar flow
makes very little difference to the calculated flooding curve.

We have also investigated the effect of using different formulations for the interfacial
friction factor. Govier & Aziz (1972) recommended that for cocurrent stratified flow with
a smooth interface, the interfacial shear stress can be calculated from the formulae

1 _
T = Eflpa uyp f, = 1.29 Reg®¥, [25]

where f, denotes the interface friction factor. The flooding curve calculated using [25] is
shown as the broken line in figure 5. Again it is seen that this refinement in the calculation
of 7 has a negligible effect on the predicted flooding curve. The flooding curve for frictionless
flow [23] is also included in figure 5. It is seen that interface and wall friction have a
significant effect on the flooding limit for the example shown.

4. COMPARISON WITH EXPERIMENTAL DATA

In part I we described measurements of countercurrent flooding limits for atmospheric
pressure air—water flow in several horizontal-to-vertical pipe elbows. Limited data were
also presented where the lower limb of the elbow was upwardly or downwardly inclined.
The range of tube geometries used in the tests were

36 mm < D < 47 mm,
24 < L/D <95,
0 < R, < 300 mm,
-0.6°< ¢ < 0.6,

where D and L /D denote the tube diameter and length-to-diameter ratio of the horizontal
leg, respectively, and R, is the radius of curvature of the elbow.

Representative data for the horizontal-to-vertical elbows (¢ = 0) are compared with
predictions of the present theory in figures 6—8. The predictions are shown as bands to
reflect the experimental uncertainty in the true inclination of the lower limb of the elbow,
estimated as 1 0.03° (the upper and lower edges of the bands correspond to the flooding
curves predicted assuming an inclination of —0.03° and + 0.03°, respectively). Overall
agreement is reasonable, and the gas flow for complete liquid carry-up (j$ = 0) is quite
well predicted. The main discrepancies are the underprediction of flooding limit for the
shorter tube lengths, L/D < 30 (see figure 7), and the failure of the model to account for
the observed effect of R, on the flooding limit. The errors are probably due mainly to the
use of [1], with j% = 0.2, to describe the onset of slugging at the hydraulic jump. It is
seen from an examination of the data in part I that j§, varies between 0.15 and 0.25 for
the experimental conditions and this variation could easily explain the discrepancies. In
practice j ¢ probably depends on the shape of the hydraulic jump, which in turn, is influenced
by the geometry of the pipe, and in particular the shape of the bend. However, no attempt
has been made as part in this investigation, to correlate the effective value of j§ with system
geometry.

Figure 9 shows a comparison with the limited data given in part 1 where the lower

MP 12-4-D
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Figure 6. Companson with data for rounded elbows with different L /D ratios (D = 35 5 mm).

limb of the elbow was initially inclined. The model predictions are again shown as bands,
reflecting the + 0.03° experimental uncertainty in the inclination. The experimental trends
are seen to be quite well represented by the theory, although additional data are obviously
needed to confirm this agreement. For the case where the lower limb of the elbow
1s downwardly inclined (upper curve in figure 9) the present model becomes invalid for
Jt'* > 0.2, when a transition to supercritical flow is predicted (see section 3.4(c) above).
Krowlewski (1980) reported measurements of flooding limits for air—water flow in a
horizontal tube connected at inlet to a 90° vertical elbow. In her tests the tube dimensions

were D = 51 mm, L/D = 11.5. The onset of flooding was taken as the point at which

0 60 T T T

045 .

0 30
g
ors ® Re=150mm
4 Rc2225mm
0 00 | 1 1
000 015 030 045
w'j *
L

Figure 7 Companson of theory with data for different radius of curvature values (L/D = 47,
D = 4.0 mm)
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Figure 8. Comparison of theory with data for square elbow, R, = 0, D = 44.0 mm.

the pressure drop across the test section increased sharply as the gas flow rate was gradually
increased. Three geometrical configurations were used, as illustrated in figure 10.

Krowlewski’s data are plotted in figure 11. There is a noticeable difference between
data for configuration A and data for configurations B and D, indicating that the flooding
limit is sensitive to details of the horizontal leg exit geometry. This effect was also noted
in our experiments described in part I and is believed due to the influence of exit geometry
on critical exit depth. Predictions of the theory are also shown in figure 11. Agreement for
configurations B and D is reasonable, but the gas flow rate required for flooding in con-
figuration A is over predicted. The fact that the best agreement is obtained for cases B and
D is not surprising, since the exit conditions in these cases correspond most closely to the
free out-fall condition assumed in the model.

060 T T T
0 Horizontal (¢h=0°)
O Upward Inchinction (¢p=0 6°)

A Downward Inclination (gh=-06°)

¢=-06°

045 f\\/umn of vahdity of model T

000
000 015 030 045
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Figure 9. Companson of theory with data showing effect of inchination (theory and data for
L/D = 57, D = 36.5 mm).
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Figure 10. Apparatus used in the experiments of Krowlewsk: (1980).

5. COMPARISON WITH OTHER FLOODING MODELS

Figure 12 compares predictions of the present model with those of the Wallis (1969)
correlation for a vertical tube (sharp-edged entry) and those of the Gardner (1983) model
for a horizontal tube. The calculations are for an air—-water flow in a tube with D = 36.5
mm, L/D = 57. Also shown are the experimental data for this case taken from figure 6.
It is seen that the air flow required to produce flooding in a horizontal tube is much smaller
than the air flow predicted for an equivalent vertical tube, using the Wallis correlation. The
Gardner model predicts a lower flooding limit over part of the range, but does not agree
well with the data. Also, this model predicts that the air flow rate for complete carry-up
(j7 = O)is close to j§ = 1.1, whereas the data show that complete liquid carry-up occurs
at j % ~ 0.2, representing a major discrepancy. The present model reproduces the data
trend fairly well, and gives the complete carry-up limit with reasonable accuracy.
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Figure 11 Comparison of theory with data of Krowlewsk: (1980) (D = 51 mm, L/D = 11.5)
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Figure 12. Companison of various flooding models.

6. CONCLUSIONS

A theoretical mode! has been developed to predict the flooding limit in a pipe elbow
of which the upper limb is vertical and the lower limb is horizontal or inclined slightly.
The model assumes that prior to flooding, a smooth stratified flow exists in the lower limb
of the elbow. A free out-fall is assumed at the exit where the liquid velocity is equal to the
critical velocity for open-channel flow. Flooding is assumed to occur because of the formation
of unstable waves (slugging) at the crest of a hydraulic jump located in the lower limb of
the elbow close to the bend. The flooding curve is calculated by solving for the stratified
two-phase flow in the lower limb of the elbow.

The model has been used to develop a generalized flooding curve for a horizontal-to-
vertical elbow in terms of nondimensional parameters. Calculated flooding limits for an
elbow where the lower limb is upwardly inclined have been presented in graphical form.

The theory has been found to give a reasonable representation of available flooding
data for elbows. In particular the observed trends with respect to the length and inclination
of the lower limb of the elbow are quite well described. The model appears to be a significant
improvement over alternative methods for predicting flooding in pipe geometries of this
kind.
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